a2 United States Patent

Bronson et al.

US009323676B2

US 9,323,676 B2
Apr. 26, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

NON-DATA INCLUSIVE COHERENT (NIC)
DIRECTORY FOR CACHE

Applicant: International Business Machines

Corporation, Armonk, NY (US)
Inventors: Timothy C. Bronson, Round Rock, TX
(US); Garrett M. Drapala,
Poughkeepsie, NY (US); Rebecca M.
Gott, Poughkeepsie, NY (US); Pak-Kin
Mak, Poughkeepsie, NY (US);
Vijayalakshmi Srinivasan, New York,
NY (US); Craig R. Walters, Highland,
NY (US)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 476 days.

Appl. No.: 13/784,958

Filed: Mar. 5, 2013
Prior Publication Data
US 2014/0258621 Al Sep. 11, 2014
Int. CI.
GOGF 12/08 (2006.01)
U.S. CL
CPC ... GO6F 12/0833 (2013.01); GO6F 12/0811

(2013.01); GO6F 12/0831 (2013.01); GO6F
2212/283 (2013.01); GO6F 2212/621 (2013.01)
Field of Classification Search

CPC GOGF 12/0811; GOGF 12/0833; GOGF
2212/283; GOGF 2212/62; GOGF 12/0891;

GOG6F 12/0824; GOGF 2212/621; GOGF

12/0831

USPC i 711/118-122, 141

See application file for complete search history.

400

(56) References Cited

U.S. PATENT DOCUMENTS

7,085,898 B2 8/2006 Blake et al.

7,266,587 B2* 9/2007 Rowlandsc...... 709/214

7,552,288 B2 6/2009 Iyer et al.
2003/0005237 Al* 12003 Dhongetal. 711/146
2007/0113022 Al* 5/2007 Abrahametal. ... 711/144
2007/0168619 Al 7/2007 Hutton et al.
2009/0094418 Al* 4/2009 Warneretal. 711/144
2010/0274971 Al* 10/2010 Solihinccccoevvene 711/122

(Continued)
OTHER PUBLICATIONS

Zhao et al; “NCID: A Non-Inclusive Cache, Inclusive Directory
Architecture for Flexible and Efficient Cache Hierarchies”; Proceed-
ings of the 7th ACM International Conference on Computing
Frontieirs, 2010, pp. 121-130.

Primary Examiner — Adam M Queler

Assistant Examiner — Alex Olson

(74) Attorney, Agemt, or Firm — Cantor Colburn LLP;
Margaret McNamara

(57) ABSTRACT

Embodiments relate to a non-data inclusive coherent (NIC)
directory for a symmetric multiprocessor (SMP) of a com-
puter. An aspect includes determining a first eviction entry of
a highest-level cache in a multilevel caching structure of the
first processor node of the SMP. Another aspect includes
determining that the NIC directory is not full. Another aspect
includes determining that the first eviction entry of the high-
est-level cache is owned by a lower-level cache in the multi-
level caching structure. Another aspect includes, based on the
NIC directory not being full and based on the first eviction
entry of the highest-level cache being owned by the lower-
level cache, installing an address of the first eviction entry of
the highest-level cache in a first new entry in the NIC direc-
tory. Another aspect includes invalidating the first eviction
entry in the highest-level cache.

8 Claims, 19 Drawing Sheets

INSTALL IN L4 CACHE:
L3 FETCH THAT MISSES IN L4 AND NIC DIRECTORIES;

L3 EXCLUSIVE LRU CASTOUT THAT HITS IN NIC DIRECTORY;
L3 FINAL COPY READ-ONLY SHARED LRU CASTOUT THAT
HITS IN NIC DIRECTORY
401

J L

INVALIDATE IN L4 CACHE:
EXCLUSIVE SNOOP FROM SMP BUS;
L4 EVICTION
402

< L

INSTALL IN NIC DIRECTORY:
IF NIC DIRECTORY IS NOT FULL, L4 EVICTION THAT IS OWNED BY AN L3 CACHE
403

J L

INVALIDATE IN NIC DIRECTORY:
EXCLUSIVE SNOOP FROM SMP BUS;
L3 EXCLUSIVE LRU CASTOUT,
L3 FINAL COPY READ ONLY SHARED LRU CASTOUT
404

US 9,323,676 B2

Page 2
(56) References Cited 2011/0320738 Al 12/2011 Blake et al.
2012/0159073 Al* 6/2012 Jaleel etal. 711/122
U.S. PATENT DOCUMENTS 2013/0254488 Al* 9/2013 Kaxirasetal. 711/130
2011/0055458 Al* 3/2011 Kuehnecccocevenne 711/103

2011/0138128 Al* 6/2011 Chenetal.ccccooo. 711/130 * cited by examiner

US 9,323,676 B2

Sheet 1 of 19

Apr. 26,2016

U.S. Patent

l 'Old

Y01 AHOWIIW NIVIA

NEOL DEOI agol Vveol
3AON JAON 3AON 3IAON
HOSS3ID0Hd HOSS3AD0Hd HOSS3ID0Hd HOSSAD0Hd

col 101 dNS

0l W31SAS ONILNdNOD

US 9,323,676 B2

Sheet 2 0f 19

Apr. 26,2016

U.S. Patent

¢ Old

NLiZ| (@12 |Viie Ng0Z| |880¢2| |V80z| |NSOzZ| |8G02| |¥S0e
=}le%e fi=FTe%e W=} lele =}lo%e [1=}Te%o W=} To’e I =Xlele §=}le%e l=}TTe%e
NOlZ| [8012| |VOre NZ0Z| |8Z02| |VZ0z| |NvOZ||&@%02| |¥v0C
V1] 1 || V1 (] 11 || 1 V1|]|
N60Z| |8602 | | V602 N90Z| [890¢| [Vo0z| |NEOZ| |g€0z| |vEOS
21 || 21 || 2 21 || a1 || 2 a1 || a1 || & 71z
AHOWIN NIVIN
Neoz | 8202 V20T
JHOVO €1 JHOVO €1 JHOVO €1
€1Z R
10C
>mo%,_m_m_o SHOV 7

00Z 3IAON HOSSIO0Hd

US 9,323,676 B2

Sheet 3 0f 19

Apr. 26,2016

U.S. Patent

VOLE
sNng

Ve Old

G0g
vivd
1A

€0¢
Ad01034Id
¥

¥0€
vivd
€1
d3aNIgnod

10€

dNS INOXA
dOONS

20¢g
Ad0103dId
OIN

VILE LIH IX

Ad010341d
€1

00€ IAON HOSSIO0Hd

US 9,323,676 B2

Sheet 4 of 19

Apr. 26,2016

U.S. Patent

de Old

__ 0T
50T
v.iva <%o
vl aaNIgNoD
azLe
NYNL3N
v.iva
SSIN €1
arLe S0c 108
SN8dNS ¢ AHOLD3HIa AHOLO3HIa
0L SS3daav i g0L¢e e
SSIN €1 ss3yaav
SSIN €1
20g
AHOLOTHIA
JIN

00€ IAON HOSSIO0Hd

US 9,323,676 B2

Sheet 5 0f 19

Apr. 26,2016

U.S. Patent

o¢ Old

G0E ObLE <ﬂ.ﬂmﬂ
vivd vivd -
Al NOILOING €1 JaNI9NOD
o0lLe
NYN13d
viva LliH ¥#1

€0¢ 10€
Ad01034Id Ad010341d

¥ €1

20¢g
Ad0103dId

OIN

00€ IAON HOSSIO0Hd

US 9,323,676 B2

Sheet 6 of 19

Apr. 26,2016

U.S. Patent

aie
v1ivda

dc old

1IH dJOONS™
adid1aon

aote
vivd

1IH dOONS™
Q3aINMONN
ANV Q3¥VHS

o ¥0€
goe
v1iva <.w,.e_d
4l
a3NIgnood
€0¢ 10€
Ad0103d1a AHO103¥1a
1 €1
43
AH0103HIa
OIN

00€ 3IAON HOSSID0¥d

US 9,323,676 B2

Sheet 7 of 19

Apr. 26,2016

U.S. Patent

v Old

Yoy
1NOLSVO N1 A3HVHS ATNO dv3d AdOD 1v¥NIH €71
-LNOLSVYO NY1 IAISNTOX3 €1
‘SNg dWS WNOYd JOONS IAISNTOX3
‘:AH0O103d1d OIN NI ILVAITVYANI

1

€0v
JHOVO €1 NV A9 AINMO S| LVHL NOILDIAT #1 “T1Nd LON SI A¥OLO3HId DIN dI
‘Ad01034dI1d OIN NI TTVLSNI

1

20¥
NOILOIAT 1
SNg dINS WNOYH4 dOONS AAISNTOX3
‘JHOVO 71 NI 3LVAI'TVANI

1

10¥
AHOL1034Ia DIN NI SLIH
1VHL LNOLSVYO N1 Ad3HVHS ATINO-AvIH AdOD T¥NIH €71
‘AHOL034Id OIN NI SLIH LVHL LNOLSVYO N¥13AISNTOX3 €1
-S31¥0L03¥IAd OIN ANV #1 NI SISSIN LVHL HOL134 €1
‘JHOVO 1 NI TIVLSNI

O
(=)
<

US 9,323,676 B2

Sheet 8 of 19

Apr. 26,2016

U.S. Patent

G Old

908
(A3A33N SV A3 LIIAT IHV IHIVD v1 NI SANIT AINMONN FLVLS AAVILS

1

cos
JHOVO ¥1 0.1 d3IAON FdV AHOLO3NIA
OIN NI 34Y LVYHL SINOLSYD NY1 €T ‘'dN ONITId SLYV.LS AHOLOIYIA OIN

1

05
AHOLO3dIA OIN NI A3 TIVLSNI 34V ANV
JHOVO €71 NV A" A3INMO F8V LVHL S3IH1INT ONILOING S1HVLS ANV d3T11d SI #1

1

€09
ALdW3 SI AMOLD3HIA JIN -dINMONN OL SNLVLS dIHSHINMO
JONVHO SLNOLSVYD NYHTET OL ONIANOdSIHHOD IHOVO ¥1 NI S3IHLNT

1 -

208
ALdNT SI AHOLO3HIA OIN -S3ANIT AINMO-ET HLIM dN DONITTIH SLHVLS FHOVO 1

1

108
ALdNZ 38V AHOLOIHIA OIN ANV FHOVO +1 ‘dNLYVLS 1V

(o]
o]
[Te)

US 9,323,676 B2

Sheet 9 of 19

Apr. 26,2016

U.S. Patent

9 Old

809
VST
209 609
01901 VAT
NOILOING
909 S09 709
Ay 1 Ad010341d Ad010341d
1A OIN
/
€09
ANI3did
>
\
209 109
JOV4Ha1NI S30V4HALNI
sSNg dNS €1

©

US 9,323,676 B2

Sheet 10 of 19

Apr. 26,2016

U.S. Patent

L Ol

0.
dIHSH3INMO FHOVD €71 ONILSINDIY IANTONI
O1 AJ010341d JIN J0 #71 NI AHLN3 40 OVL dIHSHINMO 31vadn

1

€0/
JHOVO €1 ONILSINDIY OL 1IH OL1 ONIANOdSIHHOD VLva NHN13Y

1

20,
NOILISOd NHW OL IHOVO #1 NI AHLN3 LIH 31vAdNn ‘LIH 1 NO a3sve

1 -

104
S31401034I1Ad OIN H0 ¥1 NI SLIH HO13d4 3HOVO €71

(]
(=]
~

US 9,323,676 B2

Sheet 11 of 19

Apr. 26,2016

U.S. Patent

8 Old

908
JHOVO ¥1 NI NOILISOd NHW OL AHLNI M3N L3S ‘AMLNT M3AN JLvdAITVA

1

G08
JHOVO ¥#1 NI AHLN3 M3N NI VLvd HOL134 TIVLSNI

1

¥08
3JHOVO €71 ONILS3IND3IY OL V.Lvd HOL134 NdNL3yd
‘dOONS OL 3ISNOJS3H NI SNE dINS WOY¥H V1vd HO134 IAIZO3Y

nlE

€08
SN9 dWNS NO HOL134 €17 d0d4 dOONS ANIS

nlE

208
(2} ANV L1 'SDId 33S) IHOVD ¥1WOHL AHLNI LOIAT “TINd ONIZE +1 NO g3sve

1

108
S31J0L03dId OIN ANV #1 NI S3SSIN HO134 €1

US 9,323,676 B2

Sheet 12 of 19

Apr. 26,2016

U.S. Patent

6 Old

706
d3aINMONN OL FHOVO #1 NI AHLNS 1IH 40 dIHSHIANMO 31vddn

1 -

€06
JHOVD ¥1 NI A4LN3 1IH NI VLvd 1NOLSVD TIVLSNI

1 -

206
NOILISOd NHA OL IHOVD 1 NI AMLN3 1IH 31vddn

1

106
Ad0103dI1a ¥1 NI S1IH LNOLSVD NHT AdOD TVNI4 €71

o
o
[¢]

US 9,323,676 B2

Sheet 13 of 19

Apr. 26,2016

U.S. Patent

0L Old

9001
AHOLO3HId OIN NI AHLN3 1IH 31VvAlTVANI

1

G001
A3INMONN OL FHOVO ¥1 NI AHLN3I MAN 40 dIHSHYINMO 13S

1

Y001
NOILISOd NHIAN OL AYLN3 M3IN L3S ‘FHOVO #1 NI AYLNI M3IN ALVAITVA

1 -

€001
JHOVO ¥1 NI A4LN3 M3N NI V1vd LNOLSVD €1 TIVLSNI

1 -

¢00l
(ZL ANV L1 "SDI4 33S) ¥1INO¥H4 AYLNI 1OIAT “11N4 ONIFE IHOVO ¥1 NO a3svd

1

1001
AHOLO3HIA DIN NI SLIH ‘AHOLO3¥IA #1 NI SASSIN LNOLSYO N¥T AJOD T¥NIL €71

000}

US 9,323,676 B2

Sheet 14 of 19

Apr. 26,2016

U.S. Patent

Ll Old

voLl
JHOVO ¥1 NI Ad1Nd d3103713S 3 LVAITVANI

1 -

€0L1
AHOLDO3dId DOIN NI AHLN3 d3.10313S TIVLSNI

1 I-

oLl
AdINT | = OVL NI HLIM AHLNT d3HVHS V '€
HO ‘AYLNT 0 = OVL I HLIM AMLNI AFUVHS V ¢
HO AHLNI IAISNTOXI ETNV 'L
‘OIN OL1 NOILOIANG JO4 NH1T ¥1TINOHd AYLN3 NV LOF713S

1

LOLL
AYLNI M3IN HOd FOVdS SVYH OIN -AYLNI MIN V FH04 IOVdS INVIN
Ol FHOVO 1 IWOHd4 d3d33N SI NOILOIAG ANV T1Nd SI IHOVO ¥

[=]

US 9,323,676 B2

Sheet 15 of 19

Apr. 26,2016

U.S. Patent

¢l Old

¥0cl
3JHOVO 1 NI AHLN3 3103738 31VAITVANI

1

€0CL
AdJOWIIN NIVIN OL MOVE v.1vad d3IdIaOW 3.LIdM
‘a3141a0W N339 SYH AHLN3 a310313S NI v.Llva 4di

1

cocl
JHOVO €71 NV A" JINMO AHLNG 183AT10 ¢
HO ‘IHOVO €1 ANV A8 AINMO LON AHLNT 1S30170 'L

"AHOWIW NIVIA OL NOILOIAG HO4 NHT 1 INOHd AN NV LO313S

1

L0clL
11N SI AHOLD3HIA DIN ‘AHLNI M3IN V HO4 I0VdS INVIN OL
3JHOVO 1 IWOH4 d3Ad33N SI NOILIDIAT ANV T11Nd SI JHOVO 11

US 9,323,676 B2

Sheet 16 of 19

Apr. 26,2016

U.S. Patent

¢l Old

Y0EL
AHOLD3HIA DIN HO FHOVO 1 NI AYLNT LIH NO OV.L
dIHSHINMO (dOONS IAISNTOXA NO) ILVYAITVANI 4O (dOONS d3dVvHS NO) 31vadn

1 -

€0€l
JAON HOSSII0Ud ONILSINDIH OL SNd dINS HINAO €71 ONINMO WOHL V.ivad NdN13H

1 -

cogl
JHOVO €1 ONINMO OL NOILVOOHHILNI SSOHD AHVMHEOA
‘FHOVO €17 0L IAISNTOXA LIH AHOLD3HIA DIN HO ¥1¥3HLIF NO

1

LOEL
SNg dNS NO d3AIF03d HO134 dOONS

US 9,323,676 B2

Sheet 17 of 19

Apr. 26,2016

U.S. Patent

vl Old

vovL
JHOVD #1 NI ASLNT LIH NO OVL dIHSYINMO
(dOONS IAISNTOXA NO) FLVYAITVANI 4O (dOONS d3dVvHS NO) 31vadn

1 -

€0l
SNg dINS ¥3A0 IHOVD v1 WOH4 v1ivad NHdNL13d

1 -

zovl
dOONS JAISNTOX NV J04 FHOVD €1 ONINMO OL NOILVOOHHILNI SSOHD ddvMHO4
‘FLVLS L=l AIHVHS DNIAVH LIH AHOL03HIA ¥1 NO

1

LOvL
SNg dNS NO d3AIDFH HO134 dOONS

US 9,323,676 B2

Sheet 18 of 19

Apr. 26,2016

U.S. Patent

Gl Old

¥0G1
AHOLD3IHIA DIN NI AHLNI LIH NO 9VL dIHSHINMO
(dOONS IAISNTOXA NO) LVAITYANI HO (dOONS d3dVvHS NO) 31vddn

1 -

€0G1
SNg dIANIS J3A0 IHOVO €1 ONINMO WOH4 v1vad NdNL13d

1 -

20S1
dOONS JAISNTOXT HO4 FHOVO €1 ONINMO OL NOILYOOHHILNI SSOHD AHVMHOA
‘FLVLS L=l AIHVHS DNIAVH LIH AHOLO3HIA JIN NO

1

LOS1
SNg dNS NO d3IAIOFH HOLd4 d9HVHS €1H04 dOONS

US 9,323,676 B2

Sheet 19 of 19

Apr. 26,2016

U.S. Patent

2091

wnipsiy
dl|gepesy/s|gesas
JsIndwon

O

91 Ol

Y091

21607
apon weiboid

0091
1oNpoid weiboid
Jondwon

US 9,323,676 B2

1

NON-DATA INCLUSIVE COHERENT (NIC)
DIRECTORY FOR CACHE

BACKGROUND

The present invention relates generally to a cache for a
computer processor, and more specifically, to a cache includ-
ing a non-data inclusive coherent (NIC) directory.

A symmetric multiprocessor (SMP) is a computer system
that includes a plurality of processor nodes that are linked by
one or more SMP buses. A computer system, such as an
enterprise server computer system, may include multiple pro-
cessor sockets that are interconnected in a SMP bus topology
s0 as to achieve a relatively large overall processor capacity.
Each processor node in a SMP includes a cache subsystem; a
robust cache subsystem may be critical to good performance
of'a SMP. A relatively large SMP may have high traffic on the
SMP bus, including snoops, which is a request for data by a
processor node that is sent to the other processor nodes in the
SMP, and cache-to-cache interventions, in which data
migrates from one processor node to another. A snoop may
require that a processor node interrogate a lower-level cache
in the processor node to determine if the data requested by the
snoop exists in the processor node. Such lower-level cache
interrogations may interfere with core performance in the
processor node.

An inclusive cache policy may be used in a multi-level
cache hierarchy, allowing the highest-level cache to filter out
snoops from the SMP bus when the requested data does not
reside in the lower-level caches in the processor node. How-
ever, an inclusive cache policy may be relatively inefficient in
use of available cache bits in the highest-level cache, as, in an
inclusive cache, the highest-level cache holds the same data,
or older versions of the data, that resides in the lower level
caches. A victim highest-level cache that includes copies of
the lower-level cache directories may also be used. However,
such a caching structure requires a relatively large amount of
space for the copied directories, and may also have relatively
long shared intervention latency with owned data that is
returned from a lower-level cache.

SUMMARY

Embodiments include a system, method, and computer
program product for a non-data inclusive coherent (NIC)
directory for a symmetric multiprocessor (SMP) of a com-
puter. An aspect includes determining a first eviction entry of
a highest-level cache in a multilevel caching structure of the
first processor node of the SMP. Another aspect includes
determining that the NIC directory is not full. Another aspect
includes determining that the first eviction entry of the high-
est-level cache is owned by a lower-level cache in the multi-
level caching structure. Another aspect includes, based on the
NIC directory not being full and based on the first eviction
entry of the highest-level cache being owned by the lower-
level cache, installing an address of the first eviction entry of
the highest-level cache in a first new entry in the NIC direc-
tory. Another aspect includes invalidating the first eviction
entry in the highest-level cache.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as embodiments is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The foregoing and other
features, and advantages of the embodiments are apparent

10

15

20

25

30

35

40

45

50

55

60

65

2

from the following detailed description taken in conjunction
with the accompanying drawings in which:

FIG. 1 depicts a computing system including a SMP in
accordance with an embodiment;

FIG. 2 depicts a processor node including a NIC directory
in accordance with an embodiment;

FIGS. 3A-Ddepict a processor node including a NIC direc-
tory in accordance with an embodiment;

FIG. 4 depicts a process flow for line address installations
and invalidations in a processor node including a 1.4 cache
and NIC directory in accordance with an embodiment;

FIG. 5 depicts a process flow for operation of a processor
node including a NIC directory in accordance with an
embodiment;

FIG. 6 depicts a processor node including a NIC directory
in accordance with an embodiment;

FIG. 7 depicts a process flow for a L3 cache fetch that hits
in the L4 or NIC directories in accordance with an embodi-
ment;

FIG. 8 depicts a process flow for a L3 cache fetch that
misses in the [.4 and NIC directories in accordance with an
embodiment;

FIG. 9 depicts a process flow for a 1.3 cache eviction
castout that hits in the L4 directory in accordance with an
embodiment;

FIG. 10 depicts a process flow for a L3 cache eviction
castout that misses in the [.4 directory and hits in the NIC
directory in accordance with an embodiment;

FIG. 11 depicts a process flow for eviction of an entry from
the L4 cache to the NIC directory in accordance with an
embodiment;

FIG. 12 depicts a process flow for eviction from the [.4
cache to main memory in accordance with an embodiment;

FIG. 13 depicts a process flow for a snoop fetch that hits
exclusively to a L3 cache in accordance with an embodiment;

FIG. 14 depicts a process flow for a snoop for a L3 cache
shared fetch that hits in [.4 directory in accordance with an
embodiment;

FIG. 15 depicts a process flow for a snoop for a [.3 shared
fetch that hits in the NIC directory in accordance with an
embodiment; and

FIG. 16 illustrates a computer program product in accor-
dance with an embodiment.

DETAILED DESCRIPTION

Embodiments of a NIC directory for a cache are provided,
with exemplary embodiments being discussed below in
detail. The NIC directory is used in conjunction with a multi-
level caching structure in a processor node in a SMP. The NIC
directory tracks data residing in the lower-level caches that
has particular ownership states. The NIC directory and high-
est-level cache filter snoops from other processor nodes in the
SMP, reducing cross interrogations to the lower levels of the
cache. The NIC directory holds entries including line
addresses and ownership information, but no data. The high-
est-level cache also comprises a directory that holds entries
including line addresses and ownership information; the
highest-level cache additionally holds data that is associated
with the lines in its directory. The NIC directory and highest-
level cache act to capture and track data that is evicted from
the lower-level caches to maintain an inclusive cache man-
agement policy, allowing snoop filtering, increased cache bit
efficiency and relatively fast intervention of shared data on
snoop hits. A NIC directory may have any appropriate size;

US 9,323,676 B2

3

the size of a NIC directory may be determined based on an
amount of space available on a chip residing within the pro-
cessor node.

Insome embodiments, a NIC directory may reside adjacent
to the highest-level cache in the multi-level caching structure.
In further embodiments, the NIC directory may comprise an
additional associative compartment of the cache directory,
but without the corresponding data. The NIC directory tracks
lines that are exclusively owned by a lower-level cache in the
processor node. Because exclusively-owned data is likely to
be modified in the lower-level cache, storage of such line data
in the highest-level cache may be wasteful. The NIC directory
also tracks shared read-only data that may or may not be used
for oft-node cache shared interventions. The highest-level
cache that is used in conjunction with the NIC directory may
track evictions from the lower-level cache, regardless of
whether the data in the evicted line has been modified or not,
and also commonly shared lines to enable fast intervention to
other processor nodes in the SMP. This allows the highest-
level cache and the NIC directory to effectively filter out
snooping and intervention traffic from other processor nodes.

In some embodiments, line addresses may be stored in both
the NIC directory and in the highest-level cache directory
based on an addressing scheme including a directory address
tag, which is derived from a low address portion of the system
address; a cache row, which is derived from a middle portion
of'the system address; and a byte offset comprising a targeted
byte index within a cache line. The lines in the NIC and
highest-level directories may further include the following
fields: a validity bit that indicates whether entry is valid; an
address tag that, when combined with the cache row field, is
used to determine the full system address for directory hit/
miss compares; an ownership tag which identifies which
lower-level cache within the processor node has ownership of
the entry, and whether the ownership is read-only or exclu-
sive; an intervention master (IM) bit, which, if set (i.e.,
IM=1), indicates that the processor node will be sourcing the
data on the next snoop fetch; and a shared or multiple copy
(MC) bit which, if unset (i.e., MC=0), indicates that the
processor node has the sole copy of the data (which implies
the IM bit for the entry is set). The highest-level cache addi-
tionally holds data associated with the addresses its directory.

FIG. 1 illustrates an embodiment of a computing system
100 including a SMP 101. SMP 101 includes a plurality of
processor nodes 103A-N that are linked by a SMP bus 102.
Computing system 100 also includes a main memory 104,
and may be any appropriate type of computing system. FIG.
1 is shown for illustrative purposes only; a SMP in a comput-
ing system may include any appropriate number of processor
nodes having any appropriate configuration, and the proces-
sor nodes may be connected by any appropriate number and
configuration of SMP buses. Each processor node 103A-N
includes a multi-level caching structure including a NIC
directory, which is described in further detail below. In order
to exchange data between processor nodes 103A-N, snoops
are sent by a requesting processor node of processor nodes
103A-N to the other processor nodes via the SMP bus 102.
These snoops may be intercepted by the highest-level cache
and the NIC directory in each of the receiving processor
nodes 103A-N.

In various embodiments, a NIC directory may be used in
conjunction with any appropriate multi-level caching struc-
ture; in some embodiments, the multi-level caching structure
may comprise a 4-level cache structure. While the NIC direc-
tory is discussed below with respect to a 4-level caching
structure, this is for illustrative purposes only. In embodi-
ments comprising a 4-level caching structure, a .4 cache

10

15

20

25

30

35

40

45

50

55

60

65

4

comprises the highest-level cache, and a plurality of .3, .2,
and L1 caches are located below the L4 cache. In such
embodiments, the [.4 cache and NIC directory may be shared
by all the L3 caches within the processor node, and may
communicate directly with the SMP bus. A [.4 cache may
have a size of about 256 megabytes (MB) in some embodi-
ments. The L3 cache may comprise a store-in cache that is
shared by some number of cores, and may have a size of about
32 MB in some embodiments. In some embodiments, there
may be three 1.3 shared caches in a node, for a total of up to 96
MB of unique data. In conjunction with a 256 MB L4 cache
there may be up to 352 MB of unique data within the proces-
sor node. The [.1 cache and [.2 cache may comprise store-
through caches that are private to a particular core in a pro-
cessor node. In some embodiments, the NIC directory size
may be smaller than the sum of the next lower-level cache
directories, e.g., less than 96 MB.

FIG. 2 illustrates an embodiment of a processor node 200
including an NIC directory 213 and a 4-level caching struc-
ture. Processor node 200 includes [.4 cache 201, which is the
highest-level cache, in communication with multiple L3
caches 202A-N. L4 cache 201 includes a 1.4 directory that
tracks addresses in .4 cache 201, and .4 data that is associ-
ated with the addresses. Each of L3 caches 202A-N include a
respective L3 directory and L3 data. Each of L3 caches
202A-N is in communication with a lower-level caching
structure including respective L2 caches 203A-N, 206A-N,
and 209A-N, and L1 caches 204A-N, 207A-N, and 210A-N.
The L2 caches 203A-N, 206A-N, and L1 caches 204A-N,
207A-N, and 210A-N are each assigned to a respective core
of'cores 205A-N, 208A-N, and 211A-N. NIC directory 213 is
located next to L4 cache 201 and is also in communication
with L3 caches 202A-N. NIC directory 213 tracks addresses,
but does not store data. Main memory 212 may comprise a
sub-address space of a main memory (for example, main
memory 104 of FIG. 1) that is assigned to processor node 200.
Processor node 200 may comprise any of the processor nodes
103A-N that are shown in FIG. 1. FIG. 2 is shown for illus-
trative purposes only; any appropriate number and configu-
ration of cache levels, and caches within those levels, may be
included in a processor node of a SMP. Further, a NIC direc-
tory such as NIC directory 213 may be located in any appro-
priate location within a processor node.

FIGS. 3A-D illustrate various operations that may be per-
formed within an embodiment of a processor node 300
including a NIC directory 302. In processor node 300 that is
shown in FIGS. 3A-D, L3 directory 301 may be a directory
that is located in any of L3 caches 202A-N of FIG. 2, and
includes addresses for data that is held in the particular [.3
cache. NIC directory 302 may comprise NIC directory 213 of
FIG. 2. L4 directory may be located in [.4 cache 201 of FIG.
2, and includes addresses of the data in the L4 cache; the 1.4
cache data is located in L4 data 305. Combined L3 data 304
comprises all the data located in all of the [.3 caches 202A-N.
FIG. 3A shows an embodiment of a snoop 310A that is
received by the processor node 300 from the SMP bus. The
snoop address is checked against the NIC directory 302 and
the L4 directory 303, and if there is a .3-owned hit in either
NIC directory 302 or the 1.4 directory 303, a cross interroga-
tion 311A is sent from either the NIC directory 302 or the [.4
directory 303 to the L3 directory 301 that owns the data
requested by the snoop. FIG. 3B shows an embodiment of a
fetch from a core in the processor node 300 that misses in the
L3 directory 301. The L3 miss address 310B is sent from the
L3 directory 301 the L4 directory 303, and is then broadcast
as a snoop 311B on the SMP bus. The snoop may be either an
exclusive snoop or a shared snoop, depending on whether the

US 9,323,676 B2

5

data is intended to be modified or not. Data 312B is returned
from the SMP bus in response to the snoop, and installed in
both combined [.3 data 304 and L4 data 305. FIG. 3C shows
an embodiment of installation of data from the 4 cache in the
L3 cache in the processor node 300. The install data 310C is
sent from L4 data 305 to combined L3 data 304. In order to
install data 310C in combined [.3 data 304, an entry, com-
prising 1.3 data 311C, is evicted from combined .3 data 304
and installed in L4 data 305. FIG. 3D shows an embodiment
of data sourcing in response to a snoop hit in the processor
node 300. Shared and unowned data 310D is sourced from L4
data 305 on a snoop hit, while modified data is sourced from
combined [.3 data 304 on a snoop hit.

FIG. 4 depicts a method 400 for line address installations
and invalidations in a processor node including a 1.4 cache
and NIC directory in accordance with an embodiment. In
block 401, the following entry types are installed in the 1.4
cache: L3 fetches that miss in the L4 and NIC directories; 1.3
exclusive evictions or castouts (based on, for example, [.3
least recently used, or LRU replacement policy) that hit in the
NIC directory; and [.3 read-only shared LRU castouts that hit
in NIC directory and is a final copy of data, i.e., is not owned
by any other L3 in the same processor node. In block 402, the
following entry types are invalidated in the [.4 cache, by, for
example, setting the validity bit in the entry’s line in the [.4
directory to invalid: exclusive snoops from the SMP Bus; and
L4 eviction. In block 403, the following entry type is installed
in the NIC directory if the NIC directory is not full: L4
evictions that are owned by a L3 cache. In block 404, the
following entry types are invalidated in the NIC directory by,
for example, setting the validity bit in the entry’s line in the
NIC directory to invalid: lines that are hit by exclusive snoops
from the SMP Bus; L3 exclusive LRU castouts; and [.3 read-
only shared L.RU castouts that hit in NIC directory and do not
hit in another L3 cache. Entries in the L4 cache and NIC
directory that have a validity bit set to invalid may be over-
written by an installation that is performed according to
blocks 401 or 403, and an invalidation according to blocks
402 or 404 may be triggered by an installation that is per-
formed according to blocks 401 or 403.

FIG. 5 depicts a method 500 for operation of a processor
node including a NIC directory in accordance with an
embodiment. First, in block 501, the SMP starts up, and the
L4 cache and NIC directory in the processor node are empty.
Next, in block 502, as the SMP begins executing instructions,
initial lines are installed in the L4 cache. The L4 cache is
initially filled with cache lines that are marked IM=1 and
owned by a L3 cache in the processor node, and the NIC
directory is empty. Then, in block 503, in embodiments in
which the .4 cache is larger than the combined .3 caches, the
L3 caches will start to cast out LRU data before the L4 cache
is full. The ownership status of lines in the [.4 cache corre-
sponding to these 1.3 cache LRU castouts is updated to
unowned. At this point, the [.4 cache contains mostly owned
lines, with some unowned lines; the NIC directory is still
empty. Flow then proceeds to block 504, in which, as the SMP
continues to perform work, the 1.4 cache fills up and starts
evicting entries to make room for new entries. Evictions from
the 4 cache that are owned by a L3 cache are moved to the
NIC directory. This preserves lines that are owned by a L3
cache in the caching structure. At this point, the [.4 cache
contains a mixture of L3-owned and unowned lines, and the
NIC directory has some [.3-owned lines. Next, in block 505,
the NIC directory is filling up, and L3 cache LRU castouts
start hitting in the NIC directory. The .3 LRU castouts that hit
in the NIC directory are moved to the .4 cache. The [.4 cache
may make room for a .3 LRU castout that hits in the NIC

10

15

20

25

30

35

40

45

50

55

60

65

6

directory by selecting an entry in the [4 cache that is owned
exclusively by a L3 cache to be moved to the NIC directory.
If such an entry is not available in the 1.4 cache, the [.4 cache
may select an entry for which IM=0 and ownership is shared
(MC=1) by one or more [.3s. If such an entry is not available
in the L4 cache, the L4 cache may select an entry that IM=1
and ownership is shared (MC=1) by one or more [.3s. At this
point, the .4 cache may have more unowned lines than owned
lines, and the NIC directory has more owned lines. Lastly, in
block 506, a steady state is achieved, and most of the lines
owned by a L3 cache within the processor node are now in the
NIC directory, and the L4 cache holds mainly unowned lines,
which may be evicted to make room for new entries as
needed. The [.3-owned lines that remain in the [.4 cache may
have IM=1 and MC=1 tags, allowing for relatively fast
responses to interventions requesting data to be transferred to
other processor nodes that are received on the SMP bus.

FIG. 6 depicts a processor node 600 including a NIC direc-
tory in accordance with another embodiment. Processor node
600 includes L3 interfaces 601, SMP bus interface 602, pipe-
line 603, NIC directory 604, [.4 directory 605, .4 LRU 606,
eviction logic 607, local store address registers (LSAR) 608,
and local fetch address register (LFAR) 609. L3 interfaces
601 may be in communication with any appropriate number
of L3 caches in the processor node 600. SMP bus interface
602 is in communication with a SMP bus that links a plurality
of processor nodes in a SMP. L4 LRU 606 tracks the LRU
entries in the [.4 directory 605, and is used by eviction logic
607 to determine entries to evict from the L4 directory 605
and not from the NIC directory 604, as NIC directory 604
does not need to evict for entry replacement. Elements 601-
609 of processor node 600 may be included in the various
embodiments of processor nodes 103A-N, 200, and 300 that
are shown in FIGS. 1, 2, and 3A-D. FIGS. 7-15, which
describe embodiments of various operations that are per-
formed in a processor node including a NIC directory, are
discussed below with respect to processor node 600 of FIG. 6.

FIG. 7 depicts a method 700 for a [.3 fetch that hits in the
L4 or NIC directories in accordance with an embodiment.
First, in block 701, a L3 fetch from a requesting [.3 cache goes
from L3 interfaces 601 into pipeline 603, and hits in the [.4
directory 605 or the NIC directory 604. Then, in block 702,
based on the hit being in the [.4 directory 605, the hit entry is
set to the most recently used (MRU) position in the [.4 direc-
tory 605. Next, in block 703, the L3 fetch goes back into
pipeline 603 to return the fetch data back to the requesting .3
via L3 interfaces 601. On a NIC directory hit, data is returned
from another [.3 cache within the processor node. Lastly, in
block 704, the ownership tag of the hit entry is updated in
either the NIC directory 604 or [.4 directory 605 to reflect the
requesting [.3 cache.

FIG. 8 depicts amethod 800 for a3 fetch that misses inthe
L4 and NIC directories in accordance with an embodiment.
First, in block 801, a .3 fetch from a requesting [.3 cache goes
from L3 interfaces 601 into pipeline 603, and misses the [.4
directory 605 and the NIC directory 604. Next, in block 802,
based on the [.4 cache being full, an entry is evicted from the
L4 cache to make room for a new entry; this is discussed in
further detail below with respect to FIGS. 11 and 12. Then, in
block 803, a snoop is sent to the SMP bus for the L3 fetch via
LFAR 609, pipeline 603, and SMP bus interface 602. Next, in
block 804 the fetch data is returned on the SMP bus via SMP
bus interface 602 in response to the snoop, and is sent to the
requesting [.3 cache via L3 interfaces 601. In block 805 a new
entry is created in the L4 directory 605 for the returned fetch
data. Lastly, in block 806, the new entry in the [.4 directory
605 is validated and updated into the MRU position.

US 9,323,676 B2

7

FIG. 9 depicts a method 900 for a final copy .3 castout that
hits in the 1.4 directory in accordance with an embodiment.
First, in block 901, an entry is cast out, or evicted, from a [.3
directory (based on, for example, the .3 LRU), and this
castout entry hits in the [4 directory 605. Next, in block 902,
the hit entry is set to the MRU position in L4 directory 605.
Then, in block 903, the castout data is installed in the hit entry
in the 1.4 cache. Lastly, in block 904, the ownership tag of the
hit entry in the L4 directory 605 is updated to unowned.

FIG. 10 depicts a method 1000 for a final copy L3 castout
that misses in the [L4 directory and hits in the NIC directory in
accordance with an embodiment. First, in block 1001, an
entry is cast out, or evicted, from the [.3 directory (based on,
for example, the [.3 LRU) and this castout entry misses in the
L4 directory 605 but hits in the NIC directory 604. Then, in
block 1002, based on the 1.4 cache being full, an entry is
evicted from the [.4 cache to make room for a new entry
corresponding to the L3 castout; this is discussed in further
detail below with respect to FIGS. 11 and 12. Next, in block
1003, the address and data of the L3 castout entry are installed
in a new entry in the L4 cache. In block 1004, the new entry
is validated and set to the MRU position in the [.4 directory
605. In block 1005, the ownership tag of the new entry in the
L4 director 605 is set to unowned. Lastly, in block 1006, the
hit entry in the NIC Directory 604 is invalidated.

FIG. 11 depicts a method 1100 for eviction of an entry from
the L4 cache to the NIC directory in accordance with an
embodiment. First, in block 1101, it is determined that the L4
cache is full and an eviction is needed from the L4 cache to
make room for a new entry, and that the NIC directory 604 has
room for a new entry. Next, in block 1102, the eviction logic
607 selects an entry from the 1.4 directory 605 for eviction.
Any L3 exclusively owned entry in the L4 directory 605 is
selected first; if no L3 exclusively owned entry exists in the L4
directory 605, any shared entry with IM=0 is selected; if no
shared entry with IM=0 exists in the [.4 directory 605, any
shared entry with IM=1 is selected by the eviction logic 607.
Next, in block 1103, the selected entry is installed and vali-
dated in the NIC directory 604. Lastly, in block 1104, the
selected entry is invalidated in the 1.4 directory 605.

FIG. 12 depicts a method 1200 for eviction of an entry from
the L4 cache to the main memory in accordance with an
embodiment. First, in block 1201, it is determined that the L4
cache is full and an eviction is needed from the L4 cache to
make room for a new entry, and that the NIC directory 604 is
also full. Next, in block 1202, the eviction logic 607 selects an
entry based on .4 LRU 606 information for eviction from the
L4 directory 605. The oldest entry in the [.4 directory 605 that
is not owned by any L3 cache is selected first; if no entry that
is not owned by any .3 cache exists in the [.4 directory 605,
the oldest entry in the [.4 directory 605 that is owned by a L3
cache is selected by the eviction logic 607. Then, in block
1203, if the data in the evicted entry has been modified, the
modified data is written back to the main memory. Lastly, in
block 1204, the selected entry is invalidated in the .4 direc-
tory 605.

FIG. 13 depicts a method 1300 for a snoop fetch in accor-
dance with an embodiment. First, in block 1301, a snoop fetch
is received from another processor node on the SMP bus via
SMP bus interface 602. Next, in block 1302, the snoop hits
exclusive to a L3 cache in either the NIC directory 604 or the
L4 directory 605, and a cross interrogation is forwarded to the
owning L3 via L3 interfaces 601. Then, in block 1303, the
fetch data that was retrieved by the cross interrogation is sent
on the SMP bus via SMP bus interface 602 to the requesting
processor node. Lastly, in block 1304, the ownership tag of
the entry in the NIC directory 604 or the L4 directory 605

25

30

40

45

8

corresponding to the snoop hit is updated to shared or invali-
dated based on the snoop fetch type.

FIG. 14 depicts a process flow for a snoop fetch that hits in
L4 in accordance with an embodiment. First, in block 1401, a
snoop fetch is received from another processor node on the
SMP bus via SMP bus interface 602. Next, in block 1402, the
snoop hits in the [.4 directory 605 having a shared IM=1 state,
and a cross interrogation is forwarded to the owning [.3(s) via
L3 interfaces 601 for an exclusive snoop to invalidate the
L3(s). Then, in block 1403, the fetch data is accessed from the
L4 cache and is sent on the SMP bus via SMP bus interface
602 to the requesting processor node. Lastly, in block 1404,
the ownership tag of the entry in the .4 directory 605 corre-
sponding to the hit is either updated to shared (for a shared
snoop) or invalidated (for an exclusive snoop), based on the
snoop fetch type.

FIG. 15 depicts a method 1500 for a snoop fetch that hits in
the NIC directory in accordance with an embodiment. First,
in block 1501, a snoop fetch is received from another proces-
sor node on the SMP bus via SMP bus interface 602. Next, in
block 1502, the snoop hits in the NIC directory 604 having a
shared IM=1 state, and a cross interrogation is forwarded to
the owning [.3(s) via L3 interfaces 601. Then, in block 1503,
the fetch data that was retrieved by the cross interrogation is
sent on the SMP bus via SMP bus interface 602 to the request-
ing processor node. Lastly, in block 1504, the ownership tag
of'the entry in the NIC directory 604 corresponding to the hit
is updated to shared (for a shared snoop) or invalidated (for an
exclusive snoop), based on the snoop fetch type.

As will be appreciated by one skilled in the art, one or more
aspects of the present invention may be embodied as a system,
method or computer program product. Accordingly, one or
more aspects of the present invention may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a “cir-
cuit,” “module” or “system”. Furthermore, one or more
aspects of the present invention may take the form of'a com-
puter program product embodied in one or more computer
readable medium(s) having computer readable program code
embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be acomputer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium include the following: an electrical connection hav-
ing one or more wires, a portable computer diskette, a hard
disk, a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com-
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina-
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

Referring now to FIG. 16, in one example, a computer
program product 1600 includes, for instance, one or more
storage media 1602, wherein the media may be tangible and/
or non-transitory, to store computer readable program code

US 9,323,676 B2

9

means or logic 1604 thereon to provide and facilitate one or
more aspects of embodiments described herein.

Program code, when created and stored on a tangible
medium (including but not limited to electronic memory
modules (RAM), flash memory, Compact Discs (CDs),
DVDs, Magnetic Tape and the like is often referred to as a
“computer program product”. The computer program prod-
uct medium is typically readable by a processing circuit pref-
erably in a computer system for execution by the processing
circuit. Such program code may be created using a compiler
or assembler for example, to assemble instructions, that,
when executed perform aspects of the invention.

Technical effects and benefits include interception of
snoops by higher-level caches in a processor node of a SMP.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of embodiments. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
embodiments have been presented for purposes ofillustration
and description, but is not intended to be exhaustive or limited
to the embodiments in the form disclosed. Many modifica-
tions and variations will be apparent to those of ordinary skill
in the art without departing from the scope and spirit of the
embodiments. The embodiments were chosen and described
in order to best explain the principles and the practical appli-
cation, and to enable others of ordinary skill in the art to
understand the embodiments with various modifications as
are suited to the particular use contemplated.

Computer program code for carrying out operations for
aspects of the embodiments may be written in any combina-
tion of one or more programming languages, including an
object oriented programming language such as Java, Small-
talk, C++ or the like and conventional procedural program-
ming languages, such as the “C” programming language or
similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of embodiments are described above with refer-
ence to flowchart illustrations and/or schematic diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments. It will be understood that
each block of the flowchart illustrations and/or block dia-
grams, and combinations of blocks in the flowchart illustra-
tions and/or block diagrams, can be implemented by com-
puter program instructions. These computer program
instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other pro-
grammable data processing apparatus to produce a machine,

20

25

30

40

45

55

10

such that the instructions, which execute via the processor of
the computer or other programmable data processing appa-
ratus, create means for implementing the functions/acts
specified in the flowchart and/or block diagram block or
blocks.
These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.
The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments. In this
regard, each block in the flowchart or block diagrams may
represent a module, segment, or portion of code, which com-
prises one or more executable instructions for implementing
the specified logical function(s). It should also be noted that,
in some alternative implementations, the functions noted in
the block may occur out of the order noted in the figures. For
example, two blocks shown in succession may, in fact, be
executed substantially concurrently, or the blocks may some-
times be executed in the reverse order, depending upon the
functionality involved. It will also be noted that each block of
the block diagrams and/or flowchart illustration, and combi-
nations of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and com-
puter instructions.
What is claimed is:
1. A system comprising:
a symmetric multiprocessor (SMP), the SMP comprising a
first processor node that comprises a non-data inclusive
coherent (NIC) directory and a multilevel caching struc-
ture, the system configured to perform a method com-
prising:
determining a first eviction entry of a highest-level cache
in the multilevel caching structure of the first proces-
sor node of the SMP;

determining that the NIC directory is not full;

determining that the first eviction entry of the highest-
level cache is owned by a lower-level cache in the
multilevel caching structure;

based on the NIC directory not being full and based on
the first eviction entry of the highest-level cache being
owned by the lower-level cache, installing an address
of'the first eviction entry of the highest-level cache in
a first new entry in the NIC directory;

invalidating the first eviction entry in the highest-level
cache;

determining a second eviction entry in the lower-level
cache in the multilevel caching structure;

determining that an entry corresponding to the second
eviction entry is located in the NIC directory;

US 9,323,676 B2

11

determining that an entry corresponding to the second
eviction entry is not located in another lower-level
cache in the multilevel caching structure;
based on the entry corresponding to the second eviction
entry being located in the NIC directory and based on
no entry corresponding to the second eviction entry
being located in another lower-level cache of the mul-
tilevel caching structure, creating a second new entry
corresponding to the second eviction entry in the
highest-level cache; and
invalidating the entry corresponding to the second evic-
tion entry in the NIC directory.
2. The computer system of claim 1, further comprising:
setting the second new entry in the highest-level cache to a
most recently used (MRU) position; and
setting an ownership of the second new entry in the highest-
level cache to unowned.
3. The computer system of claim 1, further comprising:
based on the NIC directory being full and based on a least
recently used (LRU) unowned entry existing in the high-
est-level cache, evicting to a main memory of the com-
puter system the LRU unowned entry; and
based on the NIC directory being full and based on a least
recently used (LRU) unowned entry not existing in the
highest-level cache, evicting an LRU owned entry of the
highest-level cache to the main memory of the computer
system.
4. The computer system of claim 1, further comprising:
receiving a snoop by the first processor node from a second
processor node of the SMP via a SMP bus;
determining that an entry corresponding to the snoop is
located in the NIC directory;
retrieving data corresponding to the snoop from the first
lower-level cache; and
forwarding the retrieved data to the second processor node
via the SMP bus.

10

20

25

30

35

12

5. The computer system of claim 4, wherein the snoop
comprises an exclusive snoop, and further comprising:

invalidating the entry corresponding to the exclusive snoop

in the NIC directory.

6. The computer system of claim 4, wherein the snoop
comprises a shared snoop, and further comprising:

updating to shared ownership of the entry corresponding to

the shared snoop in the NIC directory.

7. The computer system of claim 1, wherein the highest-
level cache and the NIC directory are in communication with
a plurality of lower-level caches in the multilevel caching
structure;

wherein the highest-level cache comprises a directory

comprising entries corresponding to a first plurality of
addresses, and data associated with the first plurality of
addresses in the directory; and

wherein the NIC directory comprises entries correspond-

ing to a second plurality of addresses, and wherein the
NIC directory does not comprise data associated the
second plurality of addresses.

8. The computer system of claim 1, wherein determining
the first eviction entry of the highest-level cache of the first
processor node of the SMP comprises:

based on an entry that is exclusively owned by the lower-

level cache existing in the highest-level cache, selecting
the entry that is exclusively owned by the lower-level
cache as the first eviction entry;

based on an entry that is exclusively owned by the lower-

level cache not existing in the highest-level cache, and
based on a shared entry having an unset intervention
master (IM) tag existing in the highest-level cache,
selecting the shared entry having the unset IM tag as the
first eviction entry; and

based on a shared entry having an unset IM tag not existing

in the highest-level cache, selecting a shared entry hav-
ing a set IM tag as the first eviction entry.

#* #* #* #* #*

